
UCRL-CONF-209556

Restructuring Large Data
Hierarchies for Scientific Query
Tools

Megan Thomas

February 10, 2005

The 9th International Database Engineering and Application
Symposium
Montreal, Canada
July 25, 2005 through July 27, 2005

Disclaimer

 This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States Government or the University of California. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States Government or the University of California,
and shall not be used for advertising or product endorsement purposes.

Restructuring Large Data Hierarchies for Scientific Query Tools

Megan Thomas, William Arrighi, Chuck Baldwin, Terence Critchlow, Tina Eliassi-Rad and
Susan Hazlett

Center for Applied Scientific Computing
Lawrence Livermore National Laboratory

Livermore, CA 94551
{mthomas, arrighi2, baldwin5, critchlow, eliassirad1, hazlett1}@llnl.gov

Abstract

Today’s large-scale scientific simulations produce
data sets tens to hundreds of terabytes in size. The
DataFoundry project is developing querying and
analysis tools for these data sets. The Approximate Ad-
Hoc Query Engine for Simulation Data (AQSIM) uses
a multi-resolution, tree-shaped data structure that
allows users to place runtime limits on queries over
scientific simulation data. In this AQSIM data
hierarchy, each node in the tree contains an abstract
model describing all of the information contained in
the subtree below that node. AQSIM is able to create
the data hierarchy in a single pass. However, the
nodes in the hierarchy frequently have low node
fanout, which leads to inefficient I/O behavior during
query processing. Low node fanout is a common
problem in tree-shaped indices. This paper presents a
set of one-pass tree “pruning” algorithms that
efficiently restructure the data hierarchy by removing
inner nodes, thereby increasing node fanout. As our
experimental results show, the best approach is a
combination of two algorithms, one that focuses on
increasing node fanout and one that attempts to reduce
the maximum tree height.

1. Introduction

Scientific investigations increasingly depend upon
simulation to supplement traditional experiments.
Experiments can be expensive, like automotive crash
studies, or impossible, like examining the evolution of
stars [9] or of the universe itself [8]. The data
generated from one large-scale scientific simulation
run can easily reach tens to hundreds of terabytes in
size, spread across thousands of files. As data set sizes
grow, finding useful information becomes increasingly
difficult. At Lawrence Livermore National Laboratory

(LLNL), the DataFoundry project research and
development efforts for the Approximate Ad-Hoc
Query Engine for Simulation Data (AQSIM) [1, 2, 3,
7] focus on querying the scientific data in these
collections, enabling scientists to easily find subsets of
interesting data.

We take an approximate approach to queries across
these data sets. Scientists can place a time constraint
on each query, and the AQSIM tool returns the best
approximate answer it can within the time constraint.
To make time-constrained queries possible, AQSIM
uses a multi-resolution, hierarchical representation of
the data in which each node in the hierarchy stores a
model of all the data in the subtree rooted at that node.
Query processing traverses the hierarchy, evaluating
the query against the data model at each node in the
traversal to determine if the subtree below that node
should be traversed or not. If the subtree can satisfy the
query, AQSIM prioritizes it for traversal, in order to
best use processing time before the query time limit is
reached.

Traditional indexing techniques will not work well
with these data sets due to the high dimensionality and
the sheer size of the data sets. The supercomputers that
run the scientific simulations are heavily used and are
not available to sort the data sets or build AQSIM
hierarchies. Also, sorting the data to facilitate bulk-
loading a traditional index like an R*-tree [5] would
require storing intermediate copies of the (sorted) data
after sorting and before the traditional index is built.
Our scientific simulation data sets can easily be large
enough that there will not be enough disk space to
store multiple copies of the data. In addition, sorting
large data sets requires multiple passes over the data.
Our aim is to create the AQSIM data hierarchy in one
pass.

AQSIM builds the current multi-resolution
hierarchy [4] based solely on spatial characteristics of

the data and produces a hierarchy that is a tree with a
relatively small fanout and large depth – far from ideal

for a disk-based data structure. In Section 3 we cover
the current hierarchy in greater detail.

In this paper we discuss several algorithms for
restructuring, or “pruning”, a data hierarchy by
deleting carefully selected inner nodes from the
hierarchy to create a shorter, higher fanout data
structure.

In Section 4, we present several algorithms for
selecting good inner nodes for deletion, and priority
orderings to use, where necessary, in selecting new
parent nodes to “adopt” the orphaned child nodes.
While we only demonstrate these algorithms on our
hierarchy, the algorithms can be applied to a variety of
hierarchical data structures [11, 13].

As shown by our experimental results, presented in
Sections 5 and 6, we have found that the best way to
restructure the data hierarchy is to take one pass over
the tree, eliminating nodes and distributing their
children to siblings of the eliminated nodes (updating
each sibling’s data model in the process). This
increases average node fanout. Then follow the first
pass with a second pass, eliminating nodes and moving
their children up, to reduce the tree height. The
pruning algorithms used in each pass may both be
applied to each piece of the hierarchy while the piece
resides in memory, making the pruning process
effectively one pass from the perspective of the disk-
based data structure.

2. Scientific simulation data

Large-scale scientific simulation programs typically
produce spatio-temporal data sets in one of several
mesh data formats, like SILO [18] or HDF [16]. A
mesh consists of an interconnected grid of small
regions, or zones. Each zone in a mesh represents a
unique spatial region and contains data (i.e. variables)
representing the state of the simulated scientific
phenomenon in that region at a specific time.

Meshes may be regular, consisting of a single type
of zone (such as rectangular boxes), or irregular,
consisting of arbitrarily shaped zones, depending on
the needs of the scientists. For pragmatic reasons, a
single mesh may be broken up and spread across
hundreds of files, or domains. The scientific simulation
generating the data defines the domains, which are
usually spatially noncontiguous. For our purposes, it is
sufficient to think of a domain simply as the chunk of
simulation data associated with, for example, a
supercomputer node that handled calculations
simulating the scientific phenomenon in that domain.
(This is a simplification. Further information on mesh
research and software is available at [14].) Figure 1
shows a mesh for an astrophysics simulation of a star.

Figure 1: Astrophysics mesh

Simulations follow a scientific phenomenon over a
span of simulated time, writing out the complete state
of the phenomenon at each timestep. A timestep may
represent a microsecond of activity in a simulation of
the mixing of two fluids, or a million years in the
evolution of the universe. The mesh itself may also
evolve – the spatial regions zones represent may
change – over the course of the simulation, in order to
maintain the finest mesh granularity at the currently
most active areas of the simulated phenomenon.
Therefore, each timestep the simulation writes out
contains a reference to the associated mesh and also
the appropriate variable information for each zone in
the mesh. A typical simulation data set will contain
data for several hundred timesteps. A more complete
description of scientific mesh data, including a contrast
with traditional relational data, is provided in [15].

3. Approximate ad-hoc query engine for
simulation data

Before we can perform any approximate query on a

data set, we need to preprocess the data to create an
Ad-Hoc Query Hierarchy (AQH) for each timestep in a
data set. AQSIM currently builds the hierarchy using a
topological agglomeration method [4] that combines
(agglomerates) neighboring zones into larger spatial
regions that become the nodes in the hierarchy one

level up from the zones, or leaf level. The topological
agglomeration algorithm then combines neighboring
spatial regions, building the next higher level of nodes
in the hierarchy, and continues repeating
agglomeration steps until it gathers neighboring
regions into the root node of a tree. The algorithm we
use is akin to an OctTree generation algorithm [17],
but works from the bottom up instead of top down.
Our algorithm has been generalized to work with both
regular and irregular meshes. As each agglomeration
operation is performed, AQSIM creates a statistical
model (i.e. minimum, maximum, average, standard
deviation) of the data within the new agglomerated
region. We have explored several alternative models
and agglomeration approaches, but since all resulting
AQH hierarchies have similar properties, we do not
present the alternative models further here.

Because the agglomeration routine uses neighbor
information in selecting which regions to combine, the
fanout of the resulting hierarchy is limited to the
maximum of the number of neighbors a zone has,
which is only eight for a rectangular, three-
dimensional grid. After agglomeration creates an initial
hierarchy, our pruning algorithms are applied to
improve the hierarchy before we write the AQH
structure to disk. Our pruning algorithms both increase
the hierarchy fanout and reduce the overall data
structure size by removing carefully selected internal
nodes from the AQH hierarchy. The sequence of
operations, from raw data to AQH hierarchy, is
depicted in Figure 2.

Figure 2: Creating an AQH

After pruning the AQH hierarchy we perform one
final optimization before writing the data structure to
disk. We eliminate variables stored as part of the data
models in child nodes when the variables can be
perfectly regenerated using the parent node’s data
model. For example, if all the data regions contained
by the children of a node are at exactly the same
temperature, only the parent node will record the
temperature data. Due to the constraints for initializing
simulations and the physical characteristics of the
processes being simulated, this optimization proved to
be quite effective. For example, in the White Dwarf
star simulation data set described in Section 5 this
optimization reduces the AQH size approximately
20%.

Queries over a data set begin at the AQH root node
for each of the timesteps in the data set. The query
engine identifies nodes (starting with the root nodes)
that match the query condition and inserts them into a
priority queue. The query engine refines nodes by
replacing nodes matching the query with the nodes’
children. The priorities of unrefined nodes in the
priority queue are based on the query and the accuracy
of the data models in the unrefined nodes. When either
the query runtime limit expires or the all of the leaf
nodes that match the query are identified, the query
result is returned. AQSIM writes query results to a new
mesh that contains only those zones that meet the
query condition. Since each node in the AQH contains
a model of the data in the subtree below it, that model
may be used to generate an approximate result if there
is insufficient time to refine an interior node. Due to
the importance of returning conservative estimates to
our users, while an approximate result may contain
false positives (i.e. regions that do not match the query
condition may be returned), the query engine is
designed to prevent any false negatives from occurring
(i.e. no region that meets the query condition will be
omitted).

Table 1: Variable definitions

Variable Meaning
I dimension of current variable
N total number of dimensions
K child node
R root node
S sibling node
p parent node
fx fanout of node x
vi

x mean value of variable i in node x
mini

x minimum of variable i in node x
maxi

x maximum of variable i in node x

Table 1 defines some variables we use in this paper.

4. Algorithms for pruning data hierarchies

We explored two basic approaches to pruning nodes
out of a hierarchy — Move Up and Move Side —
plus a third approach — Move Both, is a hybrid of
the first two approaches.

All of our pruning algorithms perform a post-order
traversal [19] of the hierarchy, pruning from the
bottom up. The pruning algorithms follow topological
data agglomeration and statistical data model creation
algorithms that work post-order, building the hierarchy
and constructing the data models from the bottom up,
domain by domain. In order to ensure that pruning
does not require an additional pass over the data set,
the pruning algorithms must also traverse the data
post-order, prune bottom up and operate on only the
information available within a given partition of the
data set, usually a domain. However, due to the speed
of memory access, we allow the pruning algorithms to
make multiple passes over the data partition currently
in memory to improve the associated tree
characteristics. Since the data is in memory during the
multiple passes, the extra passes do not cause extra
disk I/Os.

When deleting internal nodes from a hierarchy, the
crucial questions are which nodes to delete and where
to re-attach their child nodes. When developing the
pruning algorithms, we focused on moving orphaned
nodes to the parent node (Move Up) or to an
appropriate sibling node (Move Side) because these
approaches are local operations – no global knowledge
regarding the tree structure or data set is necessary.

Gathering global knowledge would require at least
one more full pass over the entire data set. For
example, working explicitly to balance the height of
the AQH would require knowledge of the total number
of nodes and the height of the tree before node deletion
and movement decisions could be made. Our pruning
algorithms require no such apriori knowledge.

We specify the desired maximum and minimum
fanouts for AQH nodes as input to the pruning process.
At present, we are most interested in how well the
algorithms achieve the specified fanout.

The pruning algorithms pass over the section of the
AQH currently in memory multiple times if the initial
pass does not increase the minimum node fanout to the
requested value. The pruning algorithms move on to
the next section of the AQH when the requested
minimum node fanout has been achieved or when no
pruning can be performed without overrunning the
requested maximum node fanout.

Unlike our plant pruning analogy, we do not ever
eliminate leaf nodes from the data structure. The leaf
nodes store the finest granularity data from the original
scientific simulation mesh. Future versions of the AQH
may eliminate leaf nodes, vastly decreasing the size of
the AQH storage files. However, for now, we store the
leaf nodes so that the scientists can get the same results
from queries over the AQH and fully scanning the
original data.

The pruning algorithms we present in this paper are
not restricted to any one data modeling algorithm or to
the AQH alone. The pruning algorithms can be applied
to any hierarchy where the data in each node in the
hierarchy summarizes the data in all the nodes below
that node, and there are no explicit restrictions on the
heights of subtrees. For example, the pruning
algorithms can work on a QuadTree [17], but not a
height-balanced R*-tree [5].

4.1 Moving nodes up

The Move Up pruning algorithm eliminates child
nodes and moves the grandchildren nodes up a level to
become immediate children of the former grandparent,
which becomes parent. The children of eliminated
nodes move up in the hierarchy. This operation both
increases the fanout of the original grandparent node,
and potentially reduces the height of the subtree below
the original grandparent node.

For each non-leaf node, p, encountered during a
pass over the current section of the AQH, Move Up
sorts p’s non-leaf children using one of the priority
orderings listed below. Move Up then deletes the
highest-priority child node, k, and adds k's children to
p's set of children. Move Up continues deleting p’s
children until it cannot find a child of p whose deletion
will not push the fanout of p above the specified
maximum fanout. Move Up does not eliminate any of
p’s grandchildren that have moved up during the
current pass.

When only one child node, k, exists such that (

+ −

kf
pf 1) ≤ maximum_fanout, then k is selected for

deletion. However, if there is more than one child node
that satisfies this fanout restriction and deleting all of
the child nodes would increase the parent node’s
fanout above the allowed maximum, then the child
nodes must be prioritized for deletion. Once the child
nodes have been prioritized, Move Up deletes the
child nodes in priority order until no child nodes
remain whose deletion would not overrun the specified
maximum fanout.

We explored several prioritization orderings for
Move Up pruning. The descriptions below refer only
to non-leaf child nodes whose deletion will not push
the parent node’s fanout above the maximum fanout
threshold.

• Random: Order child nodes randomly.
• Darwin: Order child nodes by their fanout.

Eliminate the child with lowest fanout. Use
distance of child nodes from their farthest leaf
node descendants as a tie-breaker; when more
than one child has the lowest fanout, eliminate
the child with the longest path to a leaf node
first.

• Wavelet inspired: Order child nodes by how
much the data variables they store vary relative
to the parent node’s data variables. Unlike the
first three Move Up prioritization orderings, the
wavelet-inspired orderings take the values of the
data stored on each node into consideration
when prioritizing nodes for elimination. For
these priority orderings, we include the spatial
coordinates of the nodes as three more data
dimensions. We use sums over the data
dimensions rather than products because the data
values in some dimensions are frequently
constant over large swathes of the data set. Since
subtracting the constant value from itself yields
zero, multiplying instead of adding would make
the resulting priorities always zero for many
nodes.

o Wavelet 1: Order child nodes by the sum
of the differences of their mean data variable
values from the mean data variables in the
parent node. Normalize the differences using
the variable ranges over the entire data set,
which are stored in the root node, r. Eliminate
the node with the largest difference first. Note
that this priority ordering may not be used in
one-pass pruning unless the scientific
simulation data format includes summary
information for the entire data set, which is not
usually the case with scientific simulation mesh
data, but may be so for other data types.

∑
= −

−n

i
r
i

r
i

k
i

p
i vv

0 minmax
||

o Wavelet 2: Order child nodes by how

large their data ranges are, relative to p’s data
ranges. Eliminate the child node with the widest
relative ranges first, the “biggest” child.

∑
= −

−n

i
p
i

p
i

k
i

k
i

0 minmax
minmax

o Wavelet 3: Order child nodes by the

differences of their mean data variable values
from those in the parent node, normalized by
the ranges of the data variables in p. Eliminate
the node whose mean data variable values are
farthest from the parent node's mean data values
first. Like Wavelet 1, this ordering aims to
eliminate the “most different” child.

∑
= −

−n

i
p
i

p
i

k
i

p
i vv

0 minmax
||

4.2 Moving nodes sideways

Like the Move Up pruning algorithm, the Move
Side pruning algorithm performs a post-order
traversal of the given hierarchy. The Move Side
pruning algorithm uses Move Up priority orderings
for selecting the node, e, to eliminate from the set of
children of the current node. Then Move Side uses
one of the priority orderings listed below to select the
node, s, a sibling of e that will “adopt” e's children.
The children of eliminated node e move sideways to
become children of s. The sibling nodes in the priority
orderings below are those whose fanouts will not be
pushed over the maximum fanout by the addition of
eliminated node e’s child nodes.

• Random: Pick s randomly.
• Darwin: Give e’s children to sibling s that

has the lowest fanout, the fewest children.
• Euclid: Recall that every zone and node in

the simulation mesh has spatial x, y and z
coordinates, in addition to the data variables.
Give e’s children to the sibling whose Euclidean
distance from e is smallest. If global information
on spatial dimension ranges is available for data
sets with non-symmetric spatial dimensions, it
may be best to normalize the spatial distances on
each dimension. Because our test data sets were
roughly symmetric (stellar spheres), we did not
normalize the Euclidean distances.

Table 2: Experiments

• Wavelet A: Order sibling nodes by the

differences of their mean data variable values
from e's mean data variable values, normalized
by the ranges of the data variables in the entire
data set, which are stored in root node, r. Give
e's children to the nearest sibling. Note that this
priority algorithm requires global information,
therefore it may not be suitable for one-pass
pruning.

∑
= −

−n

i
r
i

r
i

s
i

e
i vv

0 minmax
||

• Wavelet B: Order sibling nodes by the

differences of their mean data variable values
from e's means, normalized by the ranges of the
variables in their parent, p. (Wavelet B is
similar to Wavelet A, but does not require
global information.)

∑
= −

−n

i
p
i

p
i

s
i

e
i vv

0 minmax
||

• Wavelet C: Order siblings, s, by the overlap

of their data value ranges with e’s data value
ranges, normalized by the range of the parent
node p’s data value ranges. High is the lowest
value for maxi between e and s; low is the
highest value for mini between e and s. If low is
greater than high, there is no overlap between
the two nodes in data dimension i. In that case,
we add zero to the sum, not the (negative) value
of the fraction.

∑
= −

−n

i
p
i

p
i

ii lowhigh
0 minmax

4.3 Moving nodes both ways

We also ran experiments that combined the best of
our Move Up and Move Side pruning approaches.
For the section of the hierarchy currently in memory,
Move Both iterates over the nodes, pruning using
Move Side. Move Both then iterates again over
the nodes, using Move Up. Move Both moves
children of eliminated nodes both sideways and up.
Favorable results were not achieved in experiments
using Move Up, followed by Move Side, so we do
not present the results of those experiments here.

5. Experimental data sets and parameters

We ran our experiments over three scientific
simulation data sets made available by LLNL
physicists. In each experiment we built and pruned an
AQH for each timestep in each data set. The White
Dwarf data set contains 22 timesteps of a simulation of
a star exploding, totaling approximately 3.2 GB,
roughly 144 MB per timestamp. The White Dwarf data
set had 29 data dimensions. Figure 3 shows a graph of
one variable in the last timestep in the White Dwarf
data set. The Shock data set is one timestep of a
shockwave propagating through material,
approximately 6.8 GB. The Shock data set has 37 data
dimensions. The third data set, Mid-Life Star, is 16
timesteps simulating a star in the middle of its life and
totaling about 6.5 GB of data — roughly 404 MB per
timestamp. The Mid-Life Star data set has 27 data
dimensions.

In the figures in Section 6, the displayed results for
each data set are averages over all of that data set’s
timesteps.

Pruning
Algorithms

Pruning Priority Algorithms Data Sets Fanout
Ranges

Move Side Move Up
Node
Elimination
Prioritizing
Algorithms

Node
Elimination
Prioritizing
Algorithms

Sibling
Prioritization
Algorithms

No pruning
Move Up
Node Elimination
Move Side
Node Elimination,

White Dwarf
Shock

Move Both
Node Elimination

Random
Darwin
Wavelet 1
Wavelet 2
Wavelet 3

Random
Darwin
Wavelet 2

Random
Darwin
Euclid
Wavelet A
Wavelet B
Wavelet C

Mid-Life Star

10 – 20
20 – 40
40 – 60

Figure 3: White dwarf data set, a simulation

of a star exploding

The requested minimum and maximum fanout

values we experimented with are low relative to the
fanouts a B-tree (one dimension) or spatial R-tree (two
or three dimensions) uses. However, at each node the
AQH stores a statistical data model for the subtree
(minimum, maximum, average and standard deviation
for every data dimension) below that node. Therefore,
even at our relatively low experimental fanouts, a set
of child nodes (read and processed as a unit during
queries) spans multiple disk pages, giving a reasonable
balance between node size and number of disk pages
retrieved per access to the AQH on disk.

For each combination of data set, requested
minimum/maximum fanout range, and Move Up node
elimination priority algorithm listed in Table 2, we
created an AQH and then pruned the hierarchy. For the
Random priority orderings, we created and pruned an
AQH multiple times with different starting seeds for
the pseudo-random number generator and averaged the
results.

Each Move Side experiment was a combination
of:

• A data set
• A requested minimum/maximum fanout range
• A node elimination ordering, from the list in

Table 2, used to select nodes, e, for elimination
• A sibling prioritization ordering, from the list

in Table 2, used to select the sibling of e that
will adopt the e’s children

For each possible combination of the four

parameters listed, we created an AQH and pruned it. If

either the node elimination or the sibling prioritization
ordering was Random, we ran that experiment
multiple times with varied starting seeds for the
pseudo-random number generator and averaged the
results.

Finally, we combined the best Move Side and
Move Up priority algorithms for our Move Both
pruning experiments.

6. Experimental results

In this section we present the observations that led
us to implement Move Both, our best overall
hierarchy pruning approach, and comment on the
structural effects that the various pruning algorithms
and node priority orderings have on hierarchies.

In legends for Figures 4-11, when the Move Side
algorithm is listed in the legend, the first following
priority ordering is the node elimination ordering,
followed by a ‘/’ and then the sibling selection priority
ordering. For example, “MoveSide Wavelet 2 /
Wavelet C” in the legend means the Wavelet 2
ordering was used to prioritize nodes for elimination,
and the Wavelet C ordering was used to decide
which sibling adopted an eliminated node’s children.
When the Move Both algorithm is listed in the
legends, the first following priority ordering is the one
used to order nodes for elimination in both the Move
Up and Move Side passes and the priority ordering
listed after the ‘/’ is the sibling node prioritization
ordering used in the Move Side pass.

6.1 Pruning effects on average node fanout

Figures 4, 5 and 6 show that the Move Side

algorithm more rapidly improves average node fanout
than the Move Up algorithm. The Move Side
algorithm is closer to the maximum requested for 10 –
20 (Figure 4) and 20 – 40 (Figure 5) fanouts, though
the Move Up pruning algorithm eventually catches up
(Figure 6).

Move Side’s more rapid fanout improvement is
due to how it moves nodes as it prunes. As sibling
nodes are deleted and their children are transferred, the
parent nodes’ fanouts decrease. This creates more
opportunities for node deletion at the next level closer
to the root node. Recall that the pruning algorithms use
post-order hierarchy traversal; child nodes are pruned
before their parents. A node whose fanout is initially
too high to accept another block of child nodes may
have its fanout reduced to the point where it can take
custody of nephew nodes without overrunning the

specified maximum fanout. However, Move Side is
limited by the fact that on any given inner node it
eventually reaches a point where it may have a child
node eligible for elimination but no available sibling of
that child to adopt the eliminated node’s children.
Move Up does not suffer from this liability, which
accounts for why it surpasses Move Side’s average
fanout improvements when the requested maximum
fanout is high enough.

Figures 4, 5, 6 and 7 also show that the choice of
node elimination priority ordering for Move Side
has negligible impact upon the performance of the
Move Side algorithm overall —Darwin, Random
and Wavelet 2 all behaved the same. Shortly we
will show that sibling node choice does matter.

Figure 4: Effects of pruning on average node fanout for

the White Dwarf data set and fanout range from 10 to 20.
Only the best node elimination priority orderings have

been displayed.

Figure 5: Effects of pruning on average node fanout for

White Dwarf data set and fanout range from 20 to 40. Only
the best node elimination priority orderings only have

been displayed.

Figure 6: Effects of pruning on average node fanout for

White Dwarf data set and fanout range from 40 to 60. Only
the best node elimination priority orderings have been

displayed.

Figure 7 shows that the Wavelet C sibling node

selection ordering improves average node fanout better
than any of the other Move Side orderings for
selecting a sibling node to receive orphaned child
nodes, regardless of which node elimination ordering
is used. The node Move Side pruning eliminates
matters much less than where the eliminated node’s
children are reattached.

For figures after Figure 7 with Move Side results,
where the node elimination ordering is not specified in
the legend Wavelet 2 was used; the results for other
node elimination priority orderings are entirely
consistent.

The topological data modeling algorithms we
developed are very effective at building AQH nodes
with fanouts of precisely eight. The lack of strong
performance differences between node elimination
priority orderings, particularly evident in Figure 7,
may be partially attributable to the even node fanouts
in the AQH before pruning begins. However, any
pruning operations on a hierarchy built over an
OctTree or similar structure will also encounter
homogenous node fanouts. In the next subsection we
will decide which node elimination algorithm is best
based, not upon node fanout effects, but other
hierarchy metrics.

Figure 7: Average node fanout for Move Side pruning over
shock data set with fanout range from 10 to 20. Wavelet C

is the best of the sibling priority orderings.

6.2 Other pruning effects

By its nature, the Move Side algorithm cannot

decrease the height of the hierarchy. The Move Side
algorithm move nodes only sideways — never up. A
shorter hierarchy is desirable because a shorter path
from root to leaves means a smaller worst-case number
of disk I/Os between root node and leaves. As Figure 8
shows, among the Move Up node elimination priority
orderings, Darwin and Wavelet 2 most
consistently reduce AQH height. This is not surprising
for Darwin, since it explicitly uses hierarchy height to
make node elimination decisions. Wavelet 2
eliminates the child nodes whose data ranges are
largest, relative to the parent; that the “largest” child
nodes are most likely to have the longest subtrees is
intuitively logical.

In Figure 9 we look at the sum of the normalized
node perimeters. We use the sum of (maxi –
mini)/(maxr – minr) for all dimensions, over all inner
nodes i in a timestep’s AQH – the sum over the node
perimeters, normalized using the global minimum and
maximum for each dimension. This is a rough
measure of the amount of space in the data space that
the inner nodes cover — or how “big” the inner nodes
are. We average this perimeter metric over all the
timesteps in the data set. We prefer that the normalized
node perimeters be small since unnecessarily large
inner nodes may lead to queries traversing subtrees in
which no data relevant to the query will be found. (R*-
tree indexes [5] minimize node perimeters when
splitting nodes for the same reason.) Figure 9 shows
perimeter rather than volume because our data sets
include dimensions, j, where (maxj – minj) is zero for

many of the nodes in the AQH, so the volume for most
of the nodes would also be zero.

Figure 8: Effects of pruning on maximum hierarchy height
for White Dwarf data set and fanout range from 40 to 60.

As Figure 9 shows, the Move Up priority ordering
Wavelet 2 performs best at reducing the average
inner node perimeters. Among the Move Side
sibling node orderings, the Wavelet A and
Wavelet C sibling selection orderings are more
effective than the others. Recall that Wavelet A uses
some global information in making decisions;
Wavelet C does not.

Because it does well at reducing node perimeters
and uses no global information to do so, we consider
Wavelet C to be the best sibling node selection
priority ordering. Wavelet 2 performs well at both
reducing AQH height and at minimizing node
perimeters, so Wavelet 2 is the best node
elimination priority ordering.

Figure 9: Effects of pruning on node data perimeter for

White Dwarf data set and fanout range from 20 to 40. Move
Side and Move Both are using the Wavelet 2 node

elimination priority ordering. Wavelet 2, Wavelet A and
Wavelet C orderings do best at reducing the node

perimeters.

Figure 10 shows that, even though pruning does not

make a large difference in AQH maximum height,
most of the nodes in the AQH decrease in height
significantly. The leftmost peak in the graph is the
height the leaf nodes reach if all nodes in the tree are at
the maximum requested fanout for that experiment.

Figure 10: Histogram of number of leaf nodes vs. distance

from root node in hierarchies created using Move Up
pruning with the Wavelet 2 node elimination priority

ordering over the Mid-Life Star data set. Depth zero is the
root node. Notice how Move Up pruning "pulls" the nodes

up towards root.

Figure 11 shows the achieved maximum fanout
compared to the requested maximum fanout. In all but
one test the requested minimum fanout was 20 less
than the requested maximum. For the maximum fanout
of 20, we requested a minimum of 10 in order to
ensure that some pruning occurred. (Recall that, in an
unpruned AQH, most nodes have a fanout of eight.) Of
note in Figure 11 is the relative smoothness of the
achieved fanouts, indicating that the pruning
algorithms are not overly sensitive to the input
minimum and maximum fanouts. (Figure 11 shows
results from Move Up experiments; Move Both
and Move Side results were very similar.)

Figures 4, 5, 6 and 9 all include the results for
Move Both experiments that use the Wavelet 2
node elimination priority algorithm and the Wavelet
C sibling selection algorithm. Note that in all cases,
Move Both clearly outperforms both simple Move
Up and Move Side.

Note that one reason the average fanout achieved
can be smoothly specified is that the pruning
algorithms have a steady supply of low fanout nodes
from the topological node agglomeration algorithm to
work with. Once that supply is exhausted, the only
nodes available to prune will already have a fanout
near 64 (82, where 8 is the maximum fanout produced

by the topological agglomeration algorithm). Our
algorithms are limited in the ability to achieve precise
maximum fanouts, at higher requested fanouts, by the
fact we only move sets of child nodes as a unit. Simple
alterations to the pruning algorithms would make it
possible to achieve precisely the requested maximum
fanout, if necessary.

For example, pruning algorithms could consider
grandchildren for moving up at the same time that they
consider child nodes; or pruning could move some
child nodes if there is space at parent/sibling receiving
node, even if there isn’t space to move all the child
nodes. Since achieving fanouts within a reasonable
range is sufficient for our current needs, we did not
implement these changes. Also, the alterations would
slow the pruning of each node. A similar effect would
occur again if we were to request maximum fanouts
above 642, but query processing would frequently
retrieve irrelevant nodes in an AQH with such large
fanouts.

Figure 11: Average node fanout for a range of requested
maximum fanouts — Shock data set, Move Up pruning

with Wavelet 2 priority ordering. Note the smoothness of
the curve indicating that the pruning algorithms are not

over-sensitive to their input parameters.

7. Related work

Other approaches to improving the performance of

a tree-shaped data access method are to sort and bulk-
load data [10, 12] or to develop improved insertion
algorithms [6]. While we do build our data structure
ahead of its use in queries, as in bulk-loading, we do
not require that the data be sorted. Bulk-loading
requires that the data be sorted into leaf node sized
chunks, then the tree built, in order to achieve good
query performance. Sorting requires multiple passes
over the data set, but we need to avoid multiple passes
over our data sets. Rather than organizing the data,

then building a hierarchy, we approach the problem
from the other direction by building the hierarchy, then
reorganizing it for better performance.

Like our pruning, [21] reorganizes an existing tree
structure, focusing on improving poorly organized
parts of a tree-shaped data structure. However, the
algorithms in [21] are restricted to B-trees, and they
actually move data in poorly performing parts of the B-
tree around on disk while other operations run
concurrently. We only move links between nodes and
need not worry about concurrency because our data
sets are static.

Other multi-resolution, tree-like data access
methods that would be compatible with our pruning
algorithms have been proposed, such as [11, 13, 20].

The MRA-Tree [11] was designed specifically with
aggregate queries — queries that ask for sum, count,
minimum, maximum and other aggregate information
— in mind. Their focus is on maintaining the
aggregate statistics in a multi-resolution tree during
insertion and deletion operations. They do not require
a height-balanced structure.

STING [20] is also a hierarchical, space-based data
partitioning approach to spatial data mining. Like our
AQH, they allow many queries to be answered using
statistical information stored at inner nodes, in order to
reduce or eliminate the need for all queries to proceed
all the way to the leaf level.

A pyramid data structure for browsing Earth
science data is introduced in [13]. Like the AQH, their
pyramid stores multi-resolution, statistical summaries
of finer-grained data at each cell (node) and can return
approximate answers to user queries. The focus of [13]
is on populating a pyramid (hierarchy) with statistical
summaries and processing queries. They make few
assumptions about the structure of the pyramid, so
their work could be compatible with our pruning
algorithms.

8. Conclusion

We presented three one-pass algorithms for
reducing the height and increasing the fanout of a
given multi-resolution, tree-shaped hierarchy. We
experimented with all three algorithms using the Ad-
Hoc Query Hierarchy (AQH), our data structure for
approximate querying with query runtime limits. Our
Move Side hierarchy pruning algorithm removes
inner nodes and moves their children over to carefully
chosen sibling nodes. Move Up removes inner nodes
and moves their children up to the removed node’s
parent. We found that our hybrid, Move Both
algorithm, which uses Move Side and then Move

Up, achieves the best overall effect on the hierarchy.
Move Both performance benefits from Move
Side’s superior effect on inner node fanout, and
Move Up’s good effects on hierarchy height.

Because the scientific simulation data sets that the
Approximate Ad-Hoc Query Engine for Simulation
Data expects to handle are so large, we worked to
avoid multiple passes over the data while creating our
data hierarchies. Hence, our tree-shaped hierarchy
pruning algorithms are all one-pass, working on local
pieces of the tree structure without needing knowledge
of the global hierarchy characteristics.

We found that our Move Up algorithm reduced
hierarchy height, though the Move Side algorithm
was better at achieving the requested node fanouts. We
favor eliminating child nodes based on how completely
they overlap their parent node's data range (Wavelet
2 node priority ordering and Wavelet C sibling
priority ordering) because prioritizing nodes thus
delivered the best results in our experiments over
several real data sets. These prioritization orderings
also require no global knowledge to order nodes.

Move Both is, however, the best pruning
algorithm, iterating over each local piece of the
hierarchy twice — the first time applying Move Side
and the second time Move Up. It achieves average
node fanouts even closer to the maximum requested
fanout than Move Side while also reducing the
maximum height of the AQH as well as Move Up
pruning does.

For future work we could investigate splitting the
children of an eliminated node up among multiple
sibling nodes during Move Side, when no single
sibling has sufficient space to accept all the orphaned
children and not overrun the desired maximum fanout.
We plan to investigate integrating tree structures
generated by other data modeling algorithms, which
cluster data based upon all the non-spatial information,
with the tree-shaped AQH, producing and pruning a
queryable tree or directed acyclic graph.

9. Acknowledgments

We thank Jack Reaugh and the LLNL/IGPP
Djehuty astrophysics project for contributing scientific
simulation data for our experiments. We thank
Gabrielle Rennie for valuable editorial advice.

This work was performed under the auspices of the
U.S. Department of Energy by the University of
California Lawrence Livermore National Laboratory
under contract No. W-7405 ENG-48.1.

10. References

 [1] G. Abdulla, C. Baldwin, T. Critchlow, R. Kamimura, Lozares,
R. Musick, N.A. Tang, B. Lee, and R. Snapp. “Approximate Ad-
Hoc Query Engine for Simulation Data,” Proc. of the First
ACM+IEEE Joint Conf. on Digital Libraries (JCDL), ACM Press,
2001, pp 255-256.
[2] G. Abdulla, T. Critchlow and W. Arrighi. “Simulation Data as
Data Streams,” SIGMOD Record, 33(1): 89-94, March 2004.
 [3] C. Baldwin, T. Critchlow, and G. Abdulla. “Multi-Resolution
Modeling of Large-Scale Scientific Simulation Data,” Proc. of the
12th ACM International Conference on Information & Knowledge
Management, ACM Press, 2003, pp 40-48.
[4] C. Baldwin, T. Eliassi-Rad, G. Abdulla, and T. Critchlow. “The
Evolution of a Hierarchical Partitioning Algorithm for Large-Scale
Scientific Data: Three Steps of Increasing Complexity,” Proc. 15th
International Conference on Scientific and Statistical Database
Management, IEEE Computer, 2003, pp 225-228.
[5] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. “The
R*-tree: An Efficient and Robust Access Method for Points and
Rectangles,” Proc. of the ACM-SIGMOD International Conference
on Management of Data, ACM Press, 1990, pp 322-331.
[6] R. Choubey, L. Chen, and E. Rundensteiner. “GBI: A
Generalized R-tree Bulk-Insertion Strategy,” Proc. of the 8th ACM
SIGKDD International Conference on Knowledge Discovery and
Data Mining, ACM Press, 2002, pp 488-494.
[7] T. Eliassi-Rad, T. Critchlow, and G. Abdulla. “Statistical
Modeling of Large-Scale Simulation Data,” Proc. of the 8th ACM
SIGKDD International Conference on Knowledge Discovery and
Data Mining, ACM Press, 2002, pp 209-226.
[8] A. Hellemans and M. Mukerjee. “Computing the Cosmos,”
IEEE Spectrum, August 2004, pp 28-34.
 [9] A. Heller. “Building a Virtual Telescope,” Science &
Technology Review, May 2002. UCRL-52000-02-5.
http://www.llnl.gov/str/
[10] I. Kamel and C. Faloutsos. “On Packing R-trees,” Proc. of the
International Conference on Information and Knowledge
Management, ACM Press, November 1993, pp 490-499.

[11] I. Lazaridis and S. Mehrotra. “Progressive Approximate
Aggregate Queries with a Multi-Resolution Tree Structure,” Proc. of
the ACM-SIGMOD International Conference on Management of
Data, ACM Press, 2001, pp 401-412.
[12] S. T. Leutenegger, M. A. Lopez, and J. Edgington. “STR: A
Simple and Efficient Algorithm for R-tree Packing,” Proc. of the 12th
International Conference on Data Engineering, IEEE Computer
Society, April 1997, pp 497-506.
[13] Z. Li, X. Wang, M. Kafatos, and R. Yang. “A Pyramid Data
Model for Supporting Content-Based Browsing and Knowledge
Discovery,” Proc. of the 10th International Conference on Scientific
and Statistical Database Management, IEEE Computer Society,
July 1998, pp 170-179.
[14] Meshing Research Corner, Steve Owen:
http://www.andrew.cmu.edu/users/sowen/mesh.html. Also, Mesh
Generation & Grid Generation on the Web, Robert Schneiders:
http://www-users.informatik.rwth-aachen.de/
~roberts/meshgeneration.html.
[15] R. Musick and T. Critchlow. “Practical Lessons in Supporting
Large-Scale Computational Sciences,” Proc. of SIGMOD Record,
Vol 28, No. 4, ACM Press, 1999, pp 49-57.
[16] NCSA Hierarchical Data Format. http://hdf.ncsa.uiuc.edu/
[17] H. Samet. “The Quadtree and Related Hierarchical Data
Structures,” ACM Computing Surveys, Vol 16, No. 2, ACM Press,
1984, pp 187-260.
[18] SILO User's Guide , UCRL-MA-118751.
http://www.llnl.gov/bdiv/meshtv/manuals.html
[19] G. Valiente, Algorithms on Trees and Graphs, Springer-Verlag,
Berlin, 1998.
[20] W. Wang, J. Yang and R. Muntz. “STING: A Statistical
Information Grid Approach to Spatial Data Mining,” Proc. of the
23rd International Conference on Very Large Databases, Morgan
Kaufmann, August 1997, pp 186-195.
[21] C. Zou and B. Salzberg. “Safely and Efficiently Updating
References During On-Line Reorganization,” Proc. of the 24th
International Conference on Very Large Databases, September
1998, pp 512-522.

